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Summary

The retraction of stretched molecules explains the interme-
diate step of relaxation observed at short times with strained
polymer melts instead of a single rubberlike plateau.

The stress relaxation following a rapid deformation is deri-
ved in this zone of the spectrum from the non linear, quasi elas-
tic response of the transient network formed by the system of
entangled chains. This method corrects an approximate calcula-
tion of the modulus decline in DOI's original treatment of the
molecular equilibration process.

The representation of chain entanglements

We use the s1ip-link model simulating the topological cons-
traints exerted by its surrounding on one molecule of a polymer
melt (DOI and EDWARDS 1978). The polymer is represented by a
dense system of ¢ identical Gaussian chains per unit volume for-
med by Ng monomers with length b. They are linked together in
the equilibrium state by punctual entanglement junctions. These
junctions occur on the average every Ne monomers and constitute
therefore a set of N=N/Ne segments with lengtha=b.Ne /2
which will be refered hereafter as the primitive path. Because
the entanglement points are in this state of rest randomly loca-
ted in space, the end-to-end vector r; of any segment i belongs
to the ensenble ri=a.u,u  being a unit vector with isotropic
orientation.

In response to a rapid deformation kept constant afterwards,
the entanglement points move to other fixed, affine positions
imposed by the strain gradientE, so that the segment vectors
become ry=E. i . The relaxation of the system takes place
afterwards by three successive phases respectively corresponding
to the connection with the glass transition, the viscoelastic
pseudo-plateau and the flow zone.

During the first phase, characterized by a short Rousian
time Ta , the entanglements are assumed to behave as strong
cross-links allowing only a transverse diffusion of the monomers
relatively to the chain segments.

2
During a second phase B , with relaxation time Tg"(No/Ne) Ty
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they seem to play instead the role of small frictionless rings
letting the chains slip back along a distorted primitive path with
initial lengthL’: L<|E.U|>y » until they have recovered the
equilibrium arc length L=Nob?%a (DOI 1980) - Here < >, deno-
tes an average over all directions of vectors U. =

During last phaseC, with relaxation time IC=(NoINe)3 Ta
the chains return to an isotropic configuration by a reptation
process which completes their disengagement from the primitive
entanglements.

In a previous approach of the equilibrium phase B, the stress
relaxation of the model has been deduced from the sum of the con-
tributions of all the chain monomer units (DOI 1980). But this
method incorrectly implies, in order to arrive at a tractable
solution,orientations of each monomer unit independent of the
chain sTipping during the shrinking motion. Such approximations
entail significant errors which are avoided in the following revi-
sed treatment of the chains equilibration process.

The equivalent quasi equilibrium network

For very short time intervals, the system of entangled chains
may be considered at any time t (Tp<t<Tg) in a state of quasi
equilibrium and should consequently react at this instant like a
network of permanent cross-linkages with the same chain configura-
tion. According to the statistical elasticity theory, the stress
tensor on this network is (DOI and EDWARDS 1978) :

(E,):3cN(DKT 3 L1218 | psag 1]

P Fia. 0i
g o b2
o, p=Xx,y,2

where K is BOLTZMANN constant, T the temperature, N(t)the number

of monomers within each segmenti,Pdap the hydrostatic pres-

sure term dropped below by convention, and r'ig.r7 =a2(§‘g)“(§'u)|5

the products of the projections of chain segment j" on axis i = i
x,Y,z.

The stresses at the beginning and the end of the pseudo-pla-
teau are given by the following expressions derived from equ.
(DOI and EDWARDS 1978), where Go= 3C KTN :

GGB(§)= GO <(§'g)u(§'U)p >g lz:l
(when t < Ty because nj =Ne and N=No/Ne)

. E.U E.U -
Gaﬁ(§)=Go <(=—”|2Ei—‘—.fﬁ—'zp l>~‘-<I§ U|>g1 B

(when To>t > Ty because Mj(tjand N(t)become then Ni:a |['i|/b2

and N'=N;/<Ei'>u ,l.e. N'=(No/Ne)/<|EU|>,)
We need at this point a formulation of the diffusion process
controlling, between the above bounds, both the chain overall
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retraction and the diminution of its local state of stretch. Owing
to the aleatory distribution of monomer density per segment along
the primitive path, no exact solution of the consequent differen-
tial LANGEVIN equation seems at present available. However, the
uniformisation of this distribution involves a longer length scale
than the entanglement distance a. This suggests a strong coupling,
during the whole chain shrinking, between n(t)and the Tloss
N-N(t)of primitive entanglements which should not be moreover
much affected by the local stretch equalization.

Assuming therefore a virtually uniform initial monomer density,
the solution of the curvilinear diffusion equation giving the
change of the arc length is :

N(E)=N[1+(|EUlZ 1) p(t/ 15)] [4]

where g stands for a time dependent term of the same form as in
the flow zone, which decreases from unity to zero in a quasi
exponential way.

Notwithstanding the somewhat more progressive diminution of
N(E,ﬂconsistent with stricly right boundary conditions, we
retain the simple form :

k(t/Ts) zexp (- /) (5]

On the other hand, the average number of monomers per segment is
obviously related toN(t)by : <nj(t)> =No/N(t) and this
condition is fulfilled by : u

m(E) 2o [1+([E91-1) 1 (t/ 7)) &)

The substitution of equ. |_74_—| s s @ into the basic expression
of the stress tensor clearly allows a smooth transition between
the two 1imits (tstg, t 2 tg) which are represented by
equ. {2] and [3] .

These limiting cases are described in the earlier treatment
of the model by the approximate expressions [7| 8] (DOI 1980) :

(E-U)a(é-l:')p
iEylz  u ©rtE

. (EU)e(E.U)
=Go <—=—|§—.g—|§-_p>l_l fOI’tZTB

Gap = Go <IEUIZ <

The magnituae of the errors caused by the latters is shown in the
following applications of the theory to two kinds of homogeneous
deformation : uniaxial elongation and simple shear, as well as

by a comparison with corresponding stress relaxation experiments.

Comparison with experiment

Uniaxial extension

The theoretical variations of the reduced tensile modulus.,



544

defined in terms of the extension ratio A by Ea/Go=36/Go(32-")
are plotted against 1/% in fig. 1.

Ea(tJ)/Go

Fig. 1, Plot of the reduced tensile modulus Ea/Goagainst 1/
solid lines : present treatment; dashed lines : Doi's appro-
ximation; points : stress relaxation of 1,2-polybutadiene

First, let us look at the limiting cases AB, CD and A'B',
B'C where AB, CD represent the responses to a step of extension
derived from equ. |21 [3] and A'B', B'C the responses derived
from equ. [7] [8]. We see that the exact calculation indicates
much Targer variations of the tensile modulus of the model than
DOI's approximation, especially for small elongations.

The stress relaxation data obtained with a high molecular
weight 1,2-polybutadiene in the range of extensions 1,l1< A < 2
are also plotted on fig.l, both in the pseudo-plateau zone where
the isochronous curves aiverge and in the flow zone where they
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converge (NOORDERMEER and FERRY 1976). With estimated values
Go=2.107 dynes/cm? and Tg = 10 s at a_temperature of 0°C

for this polymer, equations 4] [5] [6] of the present treatment
successfully describe the experimental results in the short time
range of observations between 1 s. and 300 s.

In return, the approximate equ. |7]| [8] which enclose only a
narrow domain of moduli in this moderate range of extension, are
quite incompatible with the higher level of the viscoelastic pseudo-
plateau of the above polybutadiene.

A similar illustration of the response of the model to a step
of shear ¥ is shown on fig. 2 where the reduced shear modulus
GlGo:6]Go7Y is plotted against log ¥ for different reduced times

tITB.

Logl
| Ts
1A \8 -
\\\ -1
N
8 A\ S\
> \\ \\\ _____—B' -
o6 \
< : \\ -04
> \\
4 \
o \
\\
2 N 0
(4] + v c *
-1 -5 0 5 1
Log.Y

Fig. 2. Strain dependence of the reduced shear modulus 6 /Go Y
against log v .

Solid lines : present treatment; dashed lines : Doi's approxima-
tion

The lines AB and AB' refer again to the upper limits of
moduli respectively derived from equ. 2] and equ. |7| and the cur-
ves AC, which practically coincide , to the lTower Timits of moduli
deduced from equ. |3] [8]. We see that both treatments predict
in this case a negligible diminution of modulus with time until
shear strains of about 0.4. For larger shears, the approximate
equ. | 7] entails still a significant contraction of the model
pseudo-plateau but the discrepancy is less marked than for unia-
xial elongation.
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A fit of the other theoretical isochronous curves of fig. 2
with shear stress relaxation data obtained with concentrated solu-
tions of polystyrene (OSAKI and KURATA 1980) has not been attem-
pted owing to the unsufficiently short times covered. The charac-
teristic shoulders found by these authors on the curves of shear
relaxation indicate however, as a function of time, a visible tran-
sition from the pseudo-plateau to the flow regime. Such shoulders
are not observed in uniaxial extension, as expected from the shift
of the earlier theoretical isochronesof fig. 1.

CONCLUSION

The slip-link model of chain entanglements do not require the
introduction of empirical memory functions in the molecular theory
of polymer rheology and presents in this respect a decisive advan-
tage over former representations by non permanent cross-links at
fixed points along the chain contour (WAGNER 1978).

There remains to assess, in a more general way than by a
direct comparison with step deformations experiment, the validity
of the present treatment of slip-1ink model yielding the exact
limits of the viscoelastic pseudo-plateau. Other strain histories,
such as constant rate of elongation and stress relaxation after
stopping shearing flow are currently considered for this purpose
in this laboratory.

DOI, M. and EDWARDS, S.F. : J.C.S. Faraday II 74, 1802 (1978)

DOI, M. : J. Polymer Sci. Phys. ed. 18, 1005 (1980)

NOORDEMEER, J.W.M. and FERRY, J.D.: J. Polymer Sci. Phys. ed.
14, 509 (1976)

OSAKI, K. and KURATA, M.: Macromolecules 13, 671 (1980)
WAGNER, M.H., J. Non-Newtonian Fluid Mech. 4, 39 (1978)

Stimulating discussions with Prof. L. MONNERIE and M. J.L. VIOVY
are acknowledged with gratitude.

Received February 1, accepted February 5, 1982



