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Summar 

The retract ion of stretched molecules explains the interme- 
diate step of relaxation observed at short times with strained 
polymer melts instead of a single rubberlike plateau. 

The stress relaxation following a rapid deformation is deri-  
ved in this zone of the spectrum from the non l inear,  quasi elas- 
t i c  response of the transient network formed by the system of 
entangled chains. This method corrects an approxiniate calcula- 
tion of the modulus decline in DOl's original treatment of the 
molecular equi l ibrat ion process. 

The representation of chain entanglements 

We use the s l i p - l i n k  model simulating the topological cons- 
t ra in ts  exerted by i t s  surrounding on one molecule of a polymer 
melt (DOI and EDWARDS 1978). The polymer is represented by a 
dense system of c identical Gaussian chains per unit  volume for-  
med by N o monomers with length b. They are linked together in 
the equil ibrium state by punctual entanglement junctions. These 
junctions occur on the average every Be monomers and constitute 
therefore a set of N = N / N e  segments with lengtha=b.Ne i/2 
which wi l l  be refered hereafter as the pr imit ive path. Because 
the entanglement points are in this state of rest randomly loca- 
ted in space, the end-to-end vector ~i of any segment i belongs 
to the ensemb]e ~i : a . u ,  u being a unit vector with isotropic 
or ientat ion. 

In response to a rapid deformation kept constant afterwards, 
the entanglement points move to other f ixed, aff ine positions 
imposed by the stra in gradientE,  so that the segment vectors 
becomer'i= ~.  ~i . The relaxation of the system takes place 
afterwards by three successive phases respectively corresponding 
to the connection with the glass t rans i t ion,  the viscoelast ic 
pseudo-plateau and the flow zone. 

During the f i r s t  phase, characterized by a short Rousian 
time TA , the entanglements are assumed to behave as strong 
cross-l inks allowing only a transverse dif fusion of the monomers 
re la t i ve ly  to the chain segments. 2 _  

During a second phase B , with relaxation timeTB=(N~ 
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they seem to play instead the role o f  small f r i c t i on less  r ings 
l e t t i ng  the chains s l i p  back along a d is tor ted p r im i t i ve  path with 
i n i t i a l  l e n g t h L ' - - L < I E . U l > u  , un t i l  they have recovered the 
equi l ibr ium arc l~ngth=L~Nob:/a (DOI 1980) - Here < >U deno- 
tes an average over a l l  d i rect ions of vectors U.  

During las t  phaseC, with re laxat ion time IC = ( N ~  ~A 
the chains return to an i so t rop ic  conf igurat ion By a reptat ion 
process which completes the i r  disengagement from the p r im i t i ve  
entanglements. 

In a previous approach of the equi l ibr ium phaseB, the stress 
re laxat ion of the model has been deduced from the sum of the con- 
t r i bu t ions  of a l l  the chain monomer uni ts  (DOI 1980). But th is  
method incor rec t l y  impl ies,  in order to ar r ive at a t ractable 
so lu t ion ,o r ien ta t ions  of each monomer un i t  independent of the 
chain s l ipp ing during the shr inking motion. Such approximations 
enta i l  s i gn i f i can t  errors which are avoided in the fo l lowing rev i -  
sed treatment of the chains equ i l i b ra t ion  process. 

The equivalent quasi equ i l ib r ium network 

For very short  time in te rva ls ,  the system of entangled chains 
may be considered at any time t ( I A < t  < I B  ) in a state of quasi 
equil ibr. ium and should consequently react at th is  ins tant  l i ke  a 
network of permanent cross-l inkages with the same chain configura- 
t ion .  According to the s t a t i s t i c a l  e l a s t i c i t y  theory, the stress 
tensor on th is  network is (DOI and EDWARDS 1978) : 

N r ' ia" r , ~  P 6 a p  F ~  ~ a p ( E ' t ) = 3 c N ( t ) K T  ~- + 
"- i=1 ni ( t )  b 2 

a , p  : x , y , z  

where K is BOLTZMANN constant, T the temperature, N ( t ) t h e  number 
of monomers wi th in  each segment i, P~ a ~ the hydrostat ic  pres- 
sure term dropped below by convention, and [ ' a . r ' i R  =a2(~.U)a(E.U)R 
the products of the project ions of chain segment i ron  axls- : - i P  

x , y , z .  

The stresses at the beginning and the end of the pseudo-pla- 
teau are given by the fo l lowing expressions derived from equ. Fl~ 
(D01 and EDWARDS 1978), where Go: 3C KTN �9 

i i 

Go )p >u [ ]  

(when t < I  B because n i =Ne and N=No/Ne) 

~r~zp(E) :G  ~ <(E.U) . (E.U_)B >,< I E Ul>u -1 
= i .ul u = - _ [ ]  

(when~A >t ~ ~B because ni(t)and N(t~become then ni'=alril/b 2 
i.e. and N =No/<ni ' :  ~ , N'= (N'o7 Ne), / '~: IE.UI  > u ) 

We need at this point a formulation of the diffusion process 
controlling, between the above bounds, both the chain overall 
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retract ion and the diminution of i t s  local state, of stretch. Owing 
to the aleatory d is t r ibut ion of monomer density per segment along 
the pr imi t ive path, no exact solution of the consequent di f feren- 
t ia l  LANGEVIN equation seems at present avai lable. However, the 
uniformisation of this d is t r ibut ion involves a longer length scale 
than the entanglement distance a. This suggests a strong coupling, 
during the whole chain shrinking, between n i ( t ) and  the loss 
N - N ( t ) o f  pr imi t ive entanglements which should not be moreover 
much affected by the local stretch equalization. 

Assuming therefore a v i r t ua l l y  uniform i n i t i a l  monomer density, 
the solut ion of the curv i l inear  dif fusion equation giving the 
change of the arc length is : 

N(E , t ) :N ' [ I * (< IE ,U I~  - 1 ) I I [ t / / T B ) ]  [ ]  
where ~ stands for  a time dependent term of the same form as in 
the flow zone, which decreases from unity to zero in a quasi 
exponential way. 

Notwithstanding the somewhat more progressive diminution of 
N(E,t)consistent with s t r i c l y  r ight  boundary conditions, we 

retain the simple form : 

I~ ( t / ~ B )  =- exp C- t//XB ) [ ]  
On the other .hand, the average number of monomers per segment is 
obviously related t o N { t ) b y  : < n i ( t ) ~  : N o / N ( t )  and this 
condition is f u l f i l l e d  by : 

ni (E,t.) i ni" [1+ ( I E.U I-1 ) I~ ( t /q~B ) ] -1 [ ~  

The subst i tut ion of e q u . ~  , [ ]  , [ ]  into the basic expression 
of the stress tensor c lear ly allows a smooth t ransi t ion between 
the two l imits__(t ~ tB ,  t ~ t ) which are represented by 
equ. L~ and ~ . B 

These l imi t ing cases are described in the ear l ie r  treatment 
of the model by the approximate expressions ~-I I -~-] (D01 1980) : 

O.p- Go <IE.U I~  <(E.U ).  (E..U)p = . IE .U I  2 ~ fort <r [~] 

CrOp -" Go < (E.t~ 1r ( E.U)p I E.U: ~ 12 :>u for t .> r I T  ] 

The magnituoe of the errors caused by the lat ters is shown in the 
following applications of the theory to two kinds of homogeneous 
deformation : uniaxial elongation and simple shear, as well as 
by a comparison with corresponding stress relaxation experiments. 

Comparison with experiment 

Uniaxial extension 

The theoretical variat ions of the reduced tensi le modulus, 
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defined in terms of the extension ratio 3. byEalGo:3olGo~2-~ "I) 
are plotted against 1/}~ in f ig. 1. 
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Fig. 1. Plot of the reduced tensile n,odulus EalGoagainst 1/% 
solid lines : present treatment; dashed lines : Doi"s appro- 
ximation; points : stress relaxation of 1,2-polybutadiene 

First,  le t  us look at the l imiting cases AB, CD and A'B ~ 
B'C where AB, CD represent the responses to a step of extension 

derived from equ. 2~ ~ and A'B', B'C the responses derived 
from equ. ~_I ~ ] -  We see that the exact calculation indicates 
much larger variations of the tensile modulus of the model than 
DOI's approximation, especially for small elongations. 

The stress relaxation data obtained with a high molecular 
weight 1,2-polybutadiene in the range of extensions 1,1<_ Z <_ 2 
are also plotted on f i g . l ,  both in the pseudo-plateau zone where 
the isochronous curves diverge and in the flow zone where they 
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converge CNOORDERMEER and FERRY 1976). With estimated values 
Go=2.101 dynes/cm 2 and ~B --" 10 s at a temperature of O~ 
for this polymer, equations [ ]  [ ]  F~ [ ]  of the present treatment 
successfully describe the experimental results in the short time 
range of observations between I s. and 300 s. 

In return, the approximate equ. 1-71 ~ which enclose only a 
narrow domain of moduli in this moderate range of extension, are 
quite incompatible with the higher level of the viscoelastic pseudo- 
plateau of the above polybutadiene. 

_si_m~! _e. _sh_e__a_r 

A similar i l lustrat ion of the response of the model to a step 
of shear Y is shown on fig. 2 where the reduced shear modulus 
GIGo=~IGoY is plotted against log Y for different reduced times 
t l ~  B. 

Log  
I A  
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- .5 O .5 1 
Log.u 

Fig. 2. Strain dependence of the reduced shear modulus ( I IGo7 
against log y . 
Solid lines : present treatment; dashed lines : Doi's approxima- 
tion 

The lines AB and AB' refer again to the upper limits of 
moduli respectively derived from equ. I-2-I and equ. ITI and the cur- 
ves AC, which practical~ coTncide , to the lower limits of moduli 
deduced from equ. I~  181. We see that both treatments predict 
in this case a negligible diminution of modulus with time until 
shear strains of about 0.4. For larger shears, the approximate 
equ. I_7_I entails s t i l l  a significant contraction of the model 
pseudo-plateau but the discrepancy is less marked than for unia- 
xial elongation. 
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A f i t  of the other theoretical isochronous curves of f ig .  2 
with shear stress relaxation data obtained with concentrated solu- 
tions of polystyrene (OSAKI and KURATA 1980) has not been attem- 
pted owing to the unsuf f ic ient ly  short times covered. The charac- 
t e r i s t i c  shoulders found by these authors on the curves of shear 
relaxation indicate however, as a function of time, a v is ib le tran- 
s i t ion  from the pseudo-plateau to the flow regime. Such shoulders 
are not observed in uniaxial extension, as expected from the sh i f t  
of the ear l ie r  theoretical isochronesof f ig .  I .  

CONCLUSION 

The s l i p - l i n k  model of chain entanglements do not require the 
introduction of empirical memory functions in the molecular theory 
of polymer rheology and presents in this respect a decisive advan- 
tage over former representations by non permanent cross-l inks at 
f ixed points along the chain contour (WAGNER 1978). 

There remains to assess, in a more general way than by a 
di rect  comparison with step deformations experiment, the va l i d i t y  
of the present treatment of s l i p - l i n k  model y ie ld ing the exact 
l imi ts  of the viscoelast ic pseudo-plateau. Other strain h is tor ies,  
such as constant rate of elongation and stress relaxation af ter 
stopping shearing flow are currently considered for this purpose 
in this laboratory. 
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